0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Quantitative Damage Prediction for Composite Laminates Based on Wave Propagation and Artificial Neural Networks

Autor(en):

Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Structural Health Monitoring, , n. 1, v. 4
Seite(n): 57-66
DOI: 10.1177/1475921705049747
Abstrakt:

Targeted at an online health monitoring technique for in-service composite structures, a Lamb wave propagation-based deterioration assessment approach is developed using an artificial neural network (ANN) algorithm and a PZT transducer network. Structural dynamic responses are numerically simulated using three-dimensional FEM analyses, and signal characteristics are then extracted with a Signal Processing and Interpretation Package (SPIP) in terms of the wavelet transform technique. A damage parameters database (DPD) is constructed to accommodate the extracted wave spectrographic characteristics, and adopted for ANN training under the supervision of an error-backpropagation neural algorithm. The validity of this methodology is evaluated by identifying through-hole-type damages in [45/45/0/90]s quasi-isotropic CF/EP (T650/F584) laminates. The results exhibit excellent quantitative prediction for damage in the CF/EP composites, including position, geometric identity, and orientation. Additionally, the dependence of ANN performance on inherent network configurations is also evaluated.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.1177/1475921705049747.
  • Über diese
    Datenseite
  • Reference-ID
    10561501
  • Veröffentlicht am:
    11.02.2021
  • Geändert am:
    26.02.2021
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine