0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Properties of fibre-reinforced self-compacting concrete subjected to prolonged mixing: an experimental and fuzzy logic investigation

Auteur(s):



Médium: article de revue
Langue(s): anglais
Publié dans: Journal of Building Pathology and Rehabilitation, , n. 1, v. 9
DOI: 10.1007/s41024-023-00374-3
Abstrait:

This article investigates the effect of prolonged mixing on the rheological properties and compressive strength of fibre-reinforced self-compacting concretes (FRSCCs). Twenty FRSCC mixes with five cementitious material contents (300, 350, 400, 450 and 500 kg/m³) and three types of fibres and dosages (polypropylene at 0.1%, steel at 1.0%, or synthetic at 1.0%) were first produced. The mixes were then subjected to four mixing intervals of 20 min each (total mixing time = 80 min). The rheological properties of the fresh FRSCC mixes were examined, and the corresponding compressive strength of the hardened FRSCCs was subsequently obtained. Overall, the results from slump flow, T50, V-funnel and L-box tests on fresh mixes, as well as the 28-day compressive strength on the hardened FRSCCs, were in line with previous results reported in the literature. The results show that all mixes lost their self-compacting properties after 80 min of mixing. It was also found that mixes with high cementitious material contents (500 kg/m³) and highest polypropylene fibre dosage were most affected by prolonged mixing, with average losses of 30% and 35% in rheological properties and compressive strength, respectively. Based on the test results, this study proposes a novel fuzzy logic approach to predict the slump loss and at 28-day compressive strength loss of FRSCCs subjected to prolonged mixing. This article contributes towards a better understanding of FRSCCs after prolonged mixing, which can help make informed decisions about their use in new and repaired concrete structures.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1007/s41024-023-00374-3.
  • Informations
    sur cette fiche
  • Reference-ID
    10750792
  • Publié(e) le:
    14.01.2024
  • Modifié(e) le:
    14.01.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine