0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Prediction of Uniaxial Compressive Strength and Modulus of Elasticity in Calcareous Mudstones Using Neural Networks, Fuzzy Systems, and Regression Analysis

Auteur(s):

Médium: article de revue
Langue(s): anglais
Publié dans: Periodica Polytechnica Civil Engineering
DOI: 10.3311/ppci.13035
Abstrait:

The uniaxial compressive strength (UCS) and modulus of elasticity (E) are two important rock geomechanical parameters that are widely used in rock engineering projects such as tunnels, dams, and rock slope stability. Since the acquisition of high-quality core samples is not always possible, researchers often indirectly estimate these parameters. In the present study, prediction of UCS and E was investigated in calcareous mudstones of Aghajari Formation using multiple linear regression (MLR), multiple nonlinear regression (MNLR), artificial neural networks (ANN), and adaptive neuro-fuzzy ınference system (ANFIS). For this purpose, 80 samples from calcareous mudstones were subjected to the point loading, block punch, and cylinder punch tests. The performance of developed models was assessed based on determination coefficients (R2), mean absolute percentage error (MAPE), and variance accounted for (VAF) indices. The comparison of the obtained results revealed that, among the studied methods, ANFIS is the most suitable one for predicting UCS and E. Moreover, the results showed that ANN and MLNR respectively predict UCS and E better than MLR and a meaningful relationship between the observed and estimated UCS values in all regressions.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.3311/ppci.13035.
  • Informations
    sur cette fiche
  • Reference-ID
    10536521
  • Publié(e) le:
    01.01.2021
  • Modifié(e) le:
    19.02.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine