0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Prediction of Uniaxial Compressive Strength and Modulus of Elasticity in Calcareous Mudstones Using Neural Networks, Fuzzy Systems, and Regression Analysis

Autor(en):

Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Periodica Polytechnica Civil Engineering
DOI: 10.3311/ppci.13035
Abstrakt:

The uniaxial compressive strength (UCS) and modulus of elasticity (E) are two important rock geomechanical parameters that are widely used in rock engineering projects such as tunnels, dams, and rock slope stability. Since the acquisition of high-quality core samples is not always possible, researchers often indirectly estimate these parameters. In the present study, prediction of UCS and E was investigated in calcareous mudstones of Aghajari Formation using multiple linear regression (MLR), multiple nonlinear regression (MNLR), artificial neural networks (ANN), and adaptive neuro-fuzzy ınference system (ANFIS). For this purpose, 80 samples from calcareous mudstones were subjected to the point loading, block punch, and cylinder punch tests. The performance of developed models was assessed based on determination coefficients (R2), mean absolute percentage error (MAPE), and variance accounted for (VAF) indices. The comparison of the obtained results revealed that, among the studied methods, ANFIS is the most suitable one for predicting UCS and E. Moreover, the results showed that ANN and MLNR respectively predict UCS and E better than MLR and a meaningful relationship between the observed and estimated UCS values in all regressions.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.3311/ppci.13035.
  • Über diese
    Datenseite
  • Reference-ID
    10536521
  • Veröffentlicht am:
    01.01.2021
  • Geändert am:
    19.02.2021
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine