Prediction of Pile Bearing Capacity Using Opposition-Based Differential Flower Pollination-Optimized Least Squares Support Vector Regression (ODFP-LSSVR)
Auteur(s): |
Nhat-Duc Hoang
Xuan-Linh Tran Thanh-Canh Huynh |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Advances in Civil Engineering, janvier 2022, v. 2022 |
Page(s): | 1-25 |
DOI: | 10.1155/2022/7183700 |
Abstrait: |
Pile foundations are widely used for high-rise structures constructed in soft ground. The bearing capacity of pile is a crucial parameter required during the design and construction phase of pile foundation engineering projects. In practice, accurate predictions of pile bearing capacity are challenging due to a complex interplay of various geotechnical engineering factors including pile characteristics and ground conditions. This study proposes a data-driven model for coping with the problem of interest that hybridizes machine learning and metaheuristic approaches. Least squares support vector regression (LSSVR) is used for analyzing a dataset containing historical records of pile tests. Based on such datasets, LSSVR is capable of generalizing a multivariate function that estimates values of pile bearing capacity based on a set of variables describing pile characteristics and ground conditions. Moreover, opposition-based differential flower pollination (ODFP) metaheuristic is proposed to optimize the LSSVR learning process. Experimental results supported by the statistical test showed that the proposed ODFP-optimized LSSVR can achieve a good predictive performance in terms of root mean square error, mean absolute percentage error mean absolute error, and coefficient of determination. These results confirm that the ODFP-optimized LSSVR can be a potential alternative to assist civil engineers in the task of pile bearing capacity estimation. |
Copyright: | © Nhat-Duc Hoang et al. et al. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
2.48 MB
- Informations
sur cette fiche - Reference-ID
10663857 - Publié(e) le:
09.05.2022 - Modifié(e) le:
01.06.2022