0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Prediction of Pile Bearing Capacity Using Opposition-Based Differential Flower Pollination-Optimized Least Squares Support Vector Regression (ODFP-LSSVR)

Autor(en): ORCID
ORCID
ORCID
Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Advances in Civil Engineering, , v. 2022
Seite(n): 1-25
DOI: 10.1155/2022/7183700
Abstrakt:

Pile foundations are widely used for high-rise structures constructed in soft ground. The bearing capacity of pile is a crucial parameter required during the design and construction phase of pile foundation engineering projects. In practice, accurate predictions of pile bearing capacity are challenging due to a complex interplay of various geotechnical engineering factors including pile characteristics and ground conditions. This study proposes a data-driven model for coping with the problem of interest that hybridizes machine learning and metaheuristic approaches. Least squares support vector regression (LSSVR) is used for analyzing a dataset containing historical records of pile tests. Based on such datasets, LSSVR is capable of generalizing a multivariate function that estimates values of pile bearing capacity based on a set of variables describing pile characteristics and ground conditions. Moreover, opposition-based differential flower pollination (ODFP) metaheuristic is proposed to optimize the LSSVR learning process. Experimental results supported by the statistical test showed that the proposed ODFP-optimized LSSVR can achieve a good predictive performance in terms of root mean square error, mean absolute percentage error mean absolute error, and coefficient of determination. These results confirm that the ODFP-optimized LSSVR can be a potential alternative to assist civil engineers in the task of pile bearing capacity estimation.

Copyright: © Nhat-Duc Hoang et al. et al.
Lizenz:

Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden.

  • Über diese
    Datenseite
  • Reference-ID
    10663857
  • Veröffentlicht am:
    09.05.2022
  • Geändert am:
    01.06.2022
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine