Prediction of Pile Bearing Capacity Using Opposition-Based Differential Flower Pollination-Optimized Least Squares Support Vector Regression (ODFP-LSSVR)
Autor(en): |
Nhat-Duc Hoang
Xuan-Linh Tran Thanh-Canh Huynh |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Advances in Civil Engineering, Januar 2022, v. 2022 |
Seite(n): | 1-25 |
DOI: | 10.1155/2022/7183700 |
Abstrakt: |
Pile foundations are widely used for high-rise structures constructed in soft ground. The bearing capacity of pile is a crucial parameter required during the design and construction phase of pile foundation engineering projects. In practice, accurate predictions of pile bearing capacity are challenging due to a complex interplay of various geotechnical engineering factors including pile characteristics and ground conditions. This study proposes a data-driven model for coping with the problem of interest that hybridizes machine learning and metaheuristic approaches. Least squares support vector regression (LSSVR) is used for analyzing a dataset containing historical records of pile tests. Based on such datasets, LSSVR is capable of generalizing a multivariate function that estimates values of pile bearing capacity based on a set of variables describing pile characteristics and ground conditions. Moreover, opposition-based differential flower pollination (ODFP) metaheuristic is proposed to optimize the LSSVR learning process. Experimental results supported by the statistical test showed that the proposed ODFP-optimized LSSVR can achieve a good predictive performance in terms of root mean square error, mean absolute percentage error mean absolute error, and coefficient of determination. These results confirm that the ODFP-optimized LSSVR can be a potential alternative to assist civil engineers in the task of pile bearing capacity estimation. |
Copyright: | © Nhat-Duc Hoang et al. et al. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
2.48 MB
- Über diese
Datenseite - Reference-ID
10663857 - Veröffentlicht am:
09.05.2022 - Geändert am:
01.06.2022