0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Prediction of Low-Temperature Rheological Properties of SBS Modified Asphalt

Auteur(s):


Médium: article de revue
Langue(s): anglais
Publié dans: Advances in Civil Engineering, , v. 2020
Page(s): 1-8
DOI: 10.1155/2020/8864766
Abstrait:

The extreme learning machine (ELM) algorithm optimized by genetic algorithm (GA) was used to quickly predict the low-temperature rheological properties of styrenic block copolymer (SBS) modified asphalt through the properties of the raw materials. In this work, one hundred groups of survey data and test data were collected and analyzed. Fourteen vital raw material parameters, such as chemical composition indexes of matrix asphalt and technical indexes of SBS modifier, were selected as the input parameter. The stiffness modulus and m-value of SBS modified asphalt were taken as the output parameter. Then, the GA-ELM prediction model of low-temperature rheological properties was established. According to comparison and analysis with other prediction models, the accuracy and output stability of the GA-ELM prediction model were verified. The results show that the GA-ELM model had obvious accuracy and efficiency. It can be used to predict the low-temperature rheological properties of SBS modified asphalt. Compared with the traditional prediction models, the error of the GA-ELM model was reduced by 68.97–81.48%.

Copyright: © Qian Chen et al.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10526030
  • Publié(e) le:
    11.12.2020
  • Modifié(e) le:
    02.06.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine