0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Predicting Removal Efficiency of Formaldehyde from Synthetic Contaminated Air in Biotrickling Filter Using Artificial Neural Network Modeling

Auteur(s): ORCID (Associate Professor, Faculty of Engineering, Dept. of Civil Engineering, Kharazmi Univ., No. 43, South Mofatteh Ave., Tehran 15719-14911, I.R. Iran (corresponding author))
(M.Sc. Student, Environmental Engineering, Faculty of Engineering, Dept. of Civil Engineering, Kharazmi Univ., No. 43, South Mofatteh Ave., Tehran 15719-14911, I.R. Iran.)
(Assistant Professor, Dept. of Chemical Engineering, Jami Institute of Technology, Foulad Shahr, Ayatollah Taleghani Blvd., Isfahan 84919-63395, I.R. Iran.)
(M.Sc. Student, Environmental Engineering, Faculty of Engineering, Dept. of Civil Engineering, Kharazmi Univ., No. 43, South Mofatteh Ave., Tehran 15719-14911, I.R. Iran.)
Médium: article de revue
Langue(s): anglais
Publié dans: Journal of Environmental Engineering (ASCE), , n. 9, v. 145
Page(s): 04019056
DOI: 10.1061/(asce)ee.1943-7870.0001566
Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1061/(asce)ee.1943-7870.0001566.
  • Informations
    sur cette fiche
  • Reference-ID
    10586275
  • Publié(e) le:
    08.03.2021
  • Modifié(e) le:
    08.03.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine