• DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Optimizing the Prediction Accuracy of Friction Capacity of Driven Piles in Cohesive Soil Using a Novel Self-Tuning Least Squares Support Vector Machine

Auteur(s):

Médium: article de revue
Langue(s): en 
Publié dans: Advances in Civil Engineering, , v. 2018
Page(s): 1-9
DOI: 10.1155/2018/6490169
Abstrait:

This research presents a novel hybrid prediction technique, namely, self-tuning least squares support vector machine (ST-LSSVM), to accurately model the friction capacity of driven piles in cohesive soil. The hybrid approach uses LS-SVM as a supervised-learning-based predictor to build an accurate input-output relationship of the dataset and SOS method to optimize the σ and γ parameters of the LS-SVM. Evaluation and investigation of the ST-LSSVM were conducted on 45 training data and 20 testing data of driven pile load tests that were compiled from previous studies. The prediction accuracy of the ST-LSSVM was then compared to other machine learning methods, namely, LS-SVM and BPNN, and was benchmarked with the previous results by neural network (NN) from Goh using coefficient of correlation (R), mean absolute error (MAE), and root mean square error (RMSE). The comparison showed that the ST-LSSVM performed better than LS-SVM, BPNN, and NN in terms of R, RMSE, and MAE. This comprehensive evaluation confirmed the capability of hybrid approach SOS and LS-SVM to modeling the accurate friction capacity of driven piles in clay. It makes for a reliable and robust assistance tool in helping all geotechnical engineers estimate friction pile capacity.

Copyright: © 2018 Doddy Prayogo et al.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10176796
  • Publié(e) le:
    30.11.2018
  • Modifié(e) le:
    11.07.2019