Optimization of Blasting Parameters Considering Both Vibration Reduction and Profile Control: A Case Study in a Mountain Hard Rock Tunnel
Auteur(s): |
Junjie Zhou
Shan Gao Pingkuang Luo Jiale Fan Congcong Zhao |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Buildings, 24 avril 2024, n. 5, v. 14 |
Page(s): | 1421 |
DOI: | 10.3390/buildings14051421 |
Abstrait: |
The number of excavated tunnels is increasing day by day, and the corresponding engineering scale is also getting increasing. Safe, efficient, and economically beneficial tunnel construction methods are indispensable in the process of crossing mountains and steep ridges in the southwest region. However, behind the improvement of transportation infrastructure in Southwest China is the support provided by the rapid development of blasting industry engineering technology in China. In the process of tunnel construction using the drilling and blasting method, in addition to blasting vibration disasters the phenomenon of overbreak and underbreak caused by blasting construction is a prominent problem. This phenomenon not only affects the safety and stability of the tunnel excavation but also seriously increases the construction cost. Based on a short mountain hard rock tunnel project in southwest China, this paper studies the effect of blasting construction on the blasting vibration of adjacent structures and the influence of tunnel contour forming quality. Through the monitoring and analysis of in situ blasting vibration, the Sadowski formula is used to study the attenuation law of blasting vibration velocity in different tunnel sites, which provides a theoretical basis for tunnel blasting vibration control. This article compares the use of overbreak and underbreak value with the traditional method to determine the degree of overbreak and underbreak. It introduces the analysis of contour section fractal dimension value and uses fractal theory in the Python image processing module to accurately and quantitatively describe the problems of tunnel overbreak and underbreak. The feasibility and accuracy of this method have been verified, by combining the total station and 3D laser scanner results of overbreak and underbreak measurements of the Brenner Base Tunnel and a short hard rock tunnel in a mountainous area of southwestern China. The blasting scheme was optimized from the aspects of cut hole form, detonator interval time, and peripheral hole charge structure, and the rationality of the optimized scheme was verified according to the on-site blasting experiments. It has a profound influence on strengthening the protection of adjacent tunnel structures and improving the economic benefit of mountain highway projects. |
Copyright: | © 2024 by the authors; licensee MDPI, Basel, Switzerland. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
23.21 MB
- Informations
sur cette fiche - Reference-ID
10787696 - Publié(e) le:
20.06.2024 - Modifié(e) le:
20.06.2024