0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Numerical Simulation of the Effect of Dynamic Stress on the Rock Surrounding a Mine Roadway

Auteur(s):



Médium: article de revue
Langue(s): anglais
Publié dans: Advances in Civil Engineering, , v. 2020
Page(s): 1-10
DOI: 10.1155/2020/1656830
Abstrait:

In view of the damage of dynamic stress to the rock surrounding a mine roadway during coal mining, based on the actual geological conditions of Zhuji mine in Huainan, China, a UDEC model was established to study the influences of the thickness and strength of the direct roof above the coal seam and the anchorage effect on the stability of the roadway. The failure mechanism and effect of the dynamic stress on the rock surrounding a mine roadway were revealed. Under dynamic stress, cracks appear near the side of the roadway where the stress is concentrated. These cracks rapidly expand to the two sides of coal and rock mass. At the same time, the coal and rock mass at the top of the roadway fall, and finally, the two sides of coal and rock mass were broken and ejected into the roadway, causing a rock burst. However, when the same dynamic stress is applied to the roadway after supports are installed, there is no large-deformation failure in the roadway, which shows that, under certain conditions, rock bolting can improve the stability and seismic resistance of the surrounding coal and rock mass. Furthermore, by simulating the failure of surrounding rock with different strengths and thicknesses in the immediate roof, it is found that the thinner the roof, the greater the influence of the dynamic stress on the roadway; the stronger the roof is, the more likely the rock burst will occur with greater intensity under the same dynamic stress. A numerical simulation method was used to analyze the factors influencing rock bursting. The results provide a theoretical basis for research into the causes and prevention of rock bursts in deep mining areas.

Copyright: © 2020 Jun-hua Xue et al.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10427962
  • Publié(e) le:
    30.07.2020
  • Modifié(e) le:
    02.06.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine