0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Numerical investigation on redundancy of bridges with AASHTO I-girders

Auteur(s):




Médium: article de revue
Langue(s): anglais
Publié dans: Bridge Structures, , n. 1-2, v. 17
Page(s): 41-50
DOI: 10.3233/brs-210187
Abstrait:

Bridge safety is one of the most critical concerns among civil engineering fields due to its high importance. The redundancy of bridges was heavily investigated in the literature; however, they were focused on twin girder redundancy cases. Additionally, literatures were scarce in studies that focused on the improvement that should be made to achieve redundancy systems in different AASHTO I-girder types. Thus, this study focused on assessing the additional required number of tendons for different AASHTO I-girder types and spacing between them to achieve the redundancy of I-girder bridges. The additional unbonded tendons are suggested to be added externally or internally. The parameters varied in this study are compressive strength of ultrahigh-performance concrete (UHPC), spacing between girders (i.e. number of girders) and type of girders. Leap Bridge Concrete software was used to simulate the required structural modes. After performing extensive numerical analyses following AASHTO LRFD guidelines, the results have shown that in case of the removal of external I-girder, the tendons in the nearest girder need to be nearly increased by 1.85 to 2.3 times compared to the original design, depending on spacing, compressive strength, and the number of girders. On the other hand, in the case of interior girder removal, the number of tendons in the nearest two girders need to be increased by 1.24 to 1.32 times the original design. The effect of compressive strength variation of the used UHPC was negligible compared to spacing and type of girder. It is worth mentioning that all simulations in this study were verified using CSI Bridge software.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.3233/brs-210187.
  • Informations
    sur cette fiche
  • Reference-ID
    10612457
  • Publié(e) le:
    09.07.2021
  • Modifié(e) le:
    09.07.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine