0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

A Novel Hybrid Deep Learning Model for Complex Systems: A Case of Train Delay Prediction

Auteur(s): ORCID
ORCID
ORCID
Médium: article de revue
Langue(s): anglais
Publié dans: Advances in Civil Engineering, , v. 2024
Page(s): 1-14
DOI: 10.1155/2024/8163062
Abstrait:

Predicting the status of train delays, a complex and dynamic problem, is crucial for railway enterprises and passengers. This paper proposes a novel hybrid deep learning model composed of convolutional neural networks (CNN) and temporal convolutional networks (TCN), named the CNN + TCN model, for predicting train delays in railway systems. First, we construct 3D data containing the spatiotemporal characteristics of real-world train data. Then, the CNN + TCN model employs a 3D CNN component, which is fed into the constructed 3D data to mine the spatiotemporal characteristics, and a TCN component that captures the temporal characteristics in railway operation data. Furthermore, the characteristic variables corresponding to the two components are selected. Finally, the model is evaluated by leveraging data from two railway lines in the United Kingdom. Numerical results show that the CNN + TCN model has greater accuracy and convergence performance in train delay prediction.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1155/2024/8163062.
  • Informations
    sur cette fiche
  • Reference-ID
    10786132
  • Publié(e) le:
    20.06.2024
  • Modifié(e) le:
    20.06.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine