0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

A Novel Hybrid Deep Learning Model for Complex Systems: A Case of Train Delay Prediction

Autor(en): ORCID
ORCID
ORCID
Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Advances in Civil Engineering, , v. 2024
Seite(n): 1-14
DOI: 10.1155/2024/8163062
Abstrakt:

Predicting the status of train delays, a complex and dynamic problem, is crucial for railway enterprises and passengers. This paper proposes a novel hybrid deep learning model composed of convolutional neural networks (CNN) and temporal convolutional networks (TCN), named the CNN + TCN model, for predicting train delays in railway systems. First, we construct 3D data containing the spatiotemporal characteristics of real-world train data. Then, the CNN + TCN model employs a 3D CNN component, which is fed into the constructed 3D data to mine the spatiotemporal characteristics, and a TCN component that captures the temporal characteristics in railway operation data. Furthermore, the characteristic variables corresponding to the two components are selected. Finally, the model is evaluated by leveraging data from two railway lines in the United Kingdom. Numerical results show that the CNN + TCN model has greater accuracy and convergence performance in train delay prediction.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.1155/2024/8163062.
  • Über diese
    Datenseite
  • Reference-ID
    10786132
  • Veröffentlicht am:
    20.06.2024
  • Geändert am:
    20.06.2024
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine