Neural Network-Based Prediction Model for the Stability of Unlined Elliptical Tunnels in Cohesive-Frictional Soils
Auteur(s): |
Sayan Sirimontree
Suraparb Keawsawasvong Chayut Ngamkhanong Sorawit Seehavong Kongtawan Sangjinda Thira Jearsiripongkul Chanachai Thongchom Peem Nuaklong |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Buildings, 11 avril 2022, n. 4, v. 12 |
Page(s): | 444 |
DOI: | 10.3390/buildings12040444 |
Abstrait: |
The scheme for accurate and reliable predictions of tunnel stability based on an artificial aeural network (ANN) is presented in this study. Plastic solutions of the stability of unlined elliptical tunnels in sands are first derived by using numerical upper-bound (UB) and lower-bound (LB) finite element limit analysis (FELA). These numerical solutions are later used as the training dataset for an ANN model. Note that there are four input dimensionless parameters, including the dimensionless overburden factor γD/c′, the cover–depth ratio C/D, the width–depth ratio B/D, and the soil friction angle ϕ. The impacts of these input dimensionless parameters on the stability factor σs/c′ of the stability of shallow elliptical tunnels in sands are comprehensively examined. Some failure mechanisms are carried out to demonstrate the effects of all input parameters. The solutions will reliably and accurately provide a safety assessment of shallow elliptical tunnels. |
Copyright: | © 2022 by the authors; licensee MDPI, Basel, Switzerland. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
Types d'ouvrages
6.67 MB
- Informations
sur cette fiche - Reference-ID
10664245 - Publié(e) le:
09.05.2022 - Modifié(e) le:
01.06.2022