Neural Network-Based Prediction Model for the Stability of Unlined Elliptical Tunnels in Cohesive-Frictional Soils
Autor(en): |
Sayan Sirimontree
Suraparb Keawsawasvong Chayut Ngamkhanong Sorawit Seehavong Kongtawan Sangjinda Thira Jearsiripongkul Chanachai Thongchom Peem Nuaklong |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Buildings, 11 April 2022, n. 4, v. 12 |
Seite(n): | 444 |
DOI: | 10.3390/buildings12040444 |
Abstrakt: |
The scheme for accurate and reliable predictions of tunnel stability based on an artificial aeural network (ANN) is presented in this study. Plastic solutions of the stability of unlined elliptical tunnels in sands are first derived by using numerical upper-bound (UB) and lower-bound (LB) finite element limit analysis (FELA). These numerical solutions are later used as the training dataset for an ANN model. Note that there are four input dimensionless parameters, including the dimensionless overburden factor γD/c′, the cover–depth ratio C/D, the width–depth ratio B/D, and the soil friction angle ϕ. The impacts of these input dimensionless parameters on the stability factor σs/c′ of the stability of shallow elliptical tunnels in sands are comprehensively examined. Some failure mechanisms are carried out to demonstrate the effects of all input parameters. The solutions will reliably and accurately provide a safety assessment of shallow elliptical tunnels. |
Copyright: | © 2022 by the authors; licensee MDPI, Basel, Switzerland. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
Bauwerkstypen
6.67 MB
- Über diese
Datenseite - Reference-ID
10664245 - Veröffentlicht am:
09.05.2022 - Geändert am:
01.06.2022