0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Natural language processing‐based deep transfer learning model across diverse tabular datasets for bond strength prediction of composite bars in concrete

Auteur(s): (State Key Laboratory of Ocean Engineering Shanghai Key Laboratory for Digital Maintenance of Buildings and Infrastructure School of Ocean and Civil Engineering Shanghai Jiao Tong University Shanghai China)
(State Key Laboratory of Ocean Engineering Shanghai Key Laboratory for Digital Maintenance of Buildings and Infrastructure School of Ocean and Civil Engineering Shanghai Jiao Tong University Shanghai China)
(Department of Civil and Environmental Engineering The Hong Kong Polytechnic University Hong Kong China)
(State Key Laboratory of Ocean Engineering Shanghai Key Laboratory for Digital Maintenance of Buildings and Infrastructure School of Ocean and Civil Engineering Shanghai Jiao Tong University Shanghai China)
(State Key Laboratory of Ocean Engineering Shanghai Key Laboratory for Digital Maintenance of Buildings and Infrastructure School of Ocean and Civil Engineering Shanghai Jiao Tong University Shanghai China)
(State Key Laboratory of Ocean Engineering Shanghai Key Laboratory for Digital Maintenance of Buildings and Infrastructure School of Ocean and Civil Engineering Shanghai Jiao Tong University Shanghai China)
(Department of Civil and Environmental Engineering The Hong Kong Polytechnic University Hong Kong China)
Médium: article de revue
Langue(s): anglais
Publié dans: Computer-Aided Civil and Infrastructure Engineering
DOI: 10.1111/mice.13357
Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1111/mice.13357.
  • Informations
    sur cette fiche
  • Reference-ID
    10802055
  • Publié(e) le:
    10.11.2024
  • Modifié(e) le:
    10.11.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine