0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Natural language processing‐based deep transfer learning model across diverse tabular datasets for bond strength prediction of composite bars in concrete

Autor(en): (State Key Laboratory of Ocean Engineering Shanghai Key Laboratory for Digital Maintenance of Buildings and Infrastructure School of Ocean and Civil Engineering Shanghai Jiao Tong University Shanghai China)
(State Key Laboratory of Ocean Engineering Shanghai Key Laboratory for Digital Maintenance of Buildings and Infrastructure School of Ocean and Civil Engineering Shanghai Jiao Tong University Shanghai China)
(Department of Civil and Environmental Engineering The Hong Kong Polytechnic University Hong Kong China)
(State Key Laboratory of Ocean Engineering Shanghai Key Laboratory for Digital Maintenance of Buildings and Infrastructure School of Ocean and Civil Engineering Shanghai Jiao Tong University Shanghai China)
(State Key Laboratory of Ocean Engineering Shanghai Key Laboratory for Digital Maintenance of Buildings and Infrastructure School of Ocean and Civil Engineering Shanghai Jiao Tong University Shanghai China)
(State Key Laboratory of Ocean Engineering Shanghai Key Laboratory for Digital Maintenance of Buildings and Infrastructure School of Ocean and Civil Engineering Shanghai Jiao Tong University Shanghai China)
(Department of Civil and Environmental Engineering The Hong Kong Polytechnic University Hong Kong China)
Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Computer-Aided Civil and Infrastructure Engineering
DOI: 10.1111/mice.13357
Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.1111/mice.13357.
  • Über diese
    Datenseite
  • Reference-ID
    10802055
  • Veröffentlicht am:
    10.11.2024
  • Geändert am:
    10.11.2024
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine