0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Multi-Building Energy Forecasting Through Weather-Integrated Temporal Graph Neural Networks

Auteur(s):
ORCID

ORCID

ORCID
Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 5, v. 15
Page(s): 808
DOI: 10.3390/buildings15050808
Abstrait:

While existing building energy prediction methods have advanced significantly, they face fundamental challenges in simultaneously modeling complex spatial–temporal relationships between buildings and integrating dynamic weather patterns, particularly in dense urban environments where building interactions significantly impact energy consumption patterns. This study presents an advanced deep learning system combining temporal graph neural networks with weather data parameters to enhance prediction accuracy across diverse building types through innovative spatial–temporal modeling. This approach integrates LSTM layers with graph convolutional networks, trained using energy consumption data from 150 commercial buildings over three years. The system incorporates spatial relationships through a weighted adjacency matrix considering building proximity and operational similarities, while weather parameters are integrated via a specialized neural network component. Performance evaluation examined normal operations, data gaps, and seasonal variations. The results demonstrated a 3.2% mean absolute percentage error (MAPE) for 15 min predictions and a 4.2% MAPE for 24 h forecasts. The system showed robust data recovery, maintaining 95.8% effectiveness even with 30% missing values. Seasonal analysis revealed consistent performance across weather conditions (MAPE: 3.1–3.4%). The approach achieved 33.3% better prediction accuracy compared to conventional methods, with 75% efficiency across four GPUs. These findings demonstrate the effectiveness of combining spatial relationships and weather parameters for building energy prediction, providing valuable insights for energy management systems and urban planning. The system’s performance and scalability make it particularly suitable for practical applications in smart building management and urban sustainability.

Copyright: © 2025 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10820832
  • Publié(e) le:
    11.03.2025
  • Modifié(e) le:
    11.03.2025
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine