Multi-Building Energy Forecasting Through Weather-Integrated Temporal Graph Neural Networks
Autor(en): |
Samuel Moveh
Emmanuel Alejandro Merchán-Cruz Maher Abuhussain Saleh Alhumaid Khaled Almazam Yakubu Aminu Dodo |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Buildings, 20 Februar 2025, n. 5, v. 15 |
Seite(n): | 808 |
DOI: | 10.3390/buildings15050808 |
Abstrakt: |
While existing building energy prediction methods have advanced significantly, they face fundamental challenges in simultaneously modeling complex spatial–temporal relationships between buildings and integrating dynamic weather patterns, particularly in dense urban environments where building interactions significantly impact energy consumption patterns. This study presents an advanced deep learning system combining temporal graph neural networks with weather data parameters to enhance prediction accuracy across diverse building types through innovative spatial–temporal modeling. This approach integrates LSTM layers with graph convolutional networks, trained using energy consumption data from 150 commercial buildings over three years. The system incorporates spatial relationships through a weighted adjacency matrix considering building proximity and operational similarities, while weather parameters are integrated via a specialized neural network component. Performance evaluation examined normal operations, data gaps, and seasonal variations. The results demonstrated a 3.2% mean absolute percentage error (MAPE) for 15 min predictions and a 4.2% MAPE for 24 h forecasts. The system showed robust data recovery, maintaining 95.8% effectiveness even with 30% missing values. Seasonal analysis revealed consistent performance across weather conditions (MAPE: 3.1–3.4%). The approach achieved 33.3% better prediction accuracy compared to conventional methods, with 75% efficiency across four GPUs. These findings demonstrate the effectiveness of combining spatial relationships and weather parameters for building energy prediction, providing valuable insights for energy management systems and urban planning. The system’s performance and scalability make it particularly suitable for practical applications in smart building management and urban sustainability. |
Copyright: | © 2025 by the authors; licensee MDPI, Basel, Switzerland. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
1.91 MB
- Über diese
Datenseite - Reference-ID
10820832 - Veröffentlicht am:
11.03.2025 - Geändert am:
11.03.2025