0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Maximum Gradient Decision-Making for Railways Based on Convolutional Neural Network

Auteur(s): (Professor, College of Civil Engineering, National Engineering Laboratory of High Speed Railway Construction, Central South Univ., Changsha 410075, China.)
(Ph.D. Candidate, College of Civil Engineering, National Engineering Laboratory of High Speed Railway Construction, Central South Univ., Changsha 410075, China.)
(Professor, Dept. of Civil and Environmental Engineering, Univ. of Maryland, College Park, MD 20742.)
(Associate Professor, College of Civil Engineering, National Engineering Laboratory of High Speed Railway Construction, Central South Univ., Changsha 410075, China (corresponding author).)
(Professorate Senior Engineer, China Railway First Survey and Design Institute Group Co. Ltd., Xi’an 710043, China.)
(Professorate Senior Engineer, China Railway Siyuan Survey and Design Group Co. Ltd., Wuhan 430063, China.)
(Professorate Senior Engineer, China Railway Eryuan Engineering Group Co. Ltd., Chengdu 610031, China.)
Médium: article de revue
Langue(s): anglais
Publié dans: Journal of Transportation Engineering, Part A: Systems, , n. 11, v. 145
Page(s): 04019047
DOI: 10.1061/jtepbs.0000272
Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1061/jtepbs.0000272.
  • Informations
    sur cette fiche
  • Reference-ID
    10580370
  • Publié(e) le:
    08.03.2021
  • Modifié(e) le:
    08.03.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine