0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Machine Learning Applications in Nondestructive Testing of Concrete Structures

Auteur(s): (SVTI Wallisellen Switzerland)
(TU Dortmund University Dortmund Germany)
(SVTI Wallisellen Switzerland)
(SVTI Wallisellen Switzerland)
Médium: article de revue
Langue(s): anglais
Publié dans: ce/papers, , n. 5, v. 6
Page(s): 239-250
DOI: 10.1002/cepa.2053
Abstrait:

Machine Learning bears great potential for data‐driven solutions in the field of nondestructive testing (NDT) of concrete structures. The analysis of the data collected with NDT methods, such as ultrasonics, impact‐echo and ground penetrating radar, can be complex and requires experience. The expected benefit of Machine Learning applications in this context goes beyond the increase of efficiency obtained by automating the analysis process. While traditional analysis approaches are usually solely based on key features according to the basic principles, Machine Learning algorithms can consider the full data content and reveal hidden correlations. For an organized approach to Machine Learning on NDT data, an analysis tool has been developed. The tool provides a graphical user interface to manage and label training/test data and interactively define the Deep Neural Network architecture. In particular, Convolutional Neural Networks, as proven successful in various image recognition tasks, are implemented. The Machine Learning concepts are demonstrated in show cases, comprising ultrasonic as well as impact‐echo applications. In particular, the relevance of a targeted preprocessing is addressed, comparing the effectiveness of time‐, frequency‐ and joint‐time‐frequency‐representations.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1002/cepa.2053.
  • Informations
    sur cette fiche
  • Reference-ID
    10767289
  • Publié(e) le:
    17.04.2024
  • Modifié(e) le:
    17.04.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine