0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Machine Learning Applications in Nondestructive Testing of Concrete Structures

Autor(en): (SVTI Wallisellen Switzerland)
(TU Dortmund University Dortmund Germany)
(SVTI Wallisellen Switzerland)
(SVTI Wallisellen Switzerland)
Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: ce/papers, , n. 5, v. 6
Seite(n): 239-250
DOI: 10.1002/cepa.2053
Abstrakt:

Machine Learning bears great potential for data‐driven solutions in the field of nondestructive testing (NDT) of concrete structures. The analysis of the data collected with NDT methods, such as ultrasonics, impact‐echo and ground penetrating radar, can be complex and requires experience. The expected benefit of Machine Learning applications in this context goes beyond the increase of efficiency obtained by automating the analysis process. While traditional analysis approaches are usually solely based on key features according to the basic principles, Machine Learning algorithms can consider the full data content and reveal hidden correlations. For an organized approach to Machine Learning on NDT data, an analysis tool has been developed. The tool provides a graphical user interface to manage and label training/test data and interactively define the Deep Neural Network architecture. In particular, Convolutional Neural Networks, as proven successful in various image recognition tasks, are implemented. The Machine Learning concepts are demonstrated in show cases, comprising ultrasonic as well as impact‐echo applications. In particular, the relevance of a targeted preprocessing is addressed, comparing the effectiveness of time‐, frequency‐ and joint‐time‐frequency‐representations.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.1002/cepa.2053.
  • Über diese
    Datenseite
  • Reference-ID
    10767289
  • Veröffentlicht am:
    17.04.2024
  • Geändert am:
    17.04.2024
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine