0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Investigation on the Effects of Prefabricated Crack and Strain Rate on Uniaxial Compressive Properties of Frozen Silty Soil

Auteur(s):


Médium: article de revue
Langue(s): anglais
Publié dans: Advances in Civil Engineering, , v. 2020
Page(s): 1-11
DOI: 10.1155/2020/8813455
Abstrait:

To investigate the uniaxial compressive strength and deformation properties of frozen silty soil with prefabricated crack under various strain rates, the static uniaxial compressive tests were conducted for frozen silty soil using three kinds of binder materials to select the suitable prefabricated crack manufacturing method. Afterward, the static and dynamic stress-strain curves of frozen silty soil with different prefabricated crack numbers were obtained based on static and splitting Hopkinson pressure bar (SHPB) tests. In addition, the high-speed camera was employed to record the fracturing process of frozen silty soil under impact loads. Results indicated that the frozen silty soil specimens with no binder showed higher static strength compared with other two binder materials (plaster and Vaseline). The strength growth rate of frozen silty soil showed three-stage (fast-slow-rapid) change characteristics. The peak strain of frozen silty soil under static loads scope was higher compared with that under dynamic loads, while its dynamic peak strain with various prefabricated crack numbers was remarkably rate-dependent. The absorbed energy density of frozen silty soil was subject to a negative (positive) relationship with the prefabricated crack numbers (strain rate). The dominated crack of intact frozen silty soil specimen finally presented Y-shaped shear failure. However, tensile cracks parallel to stress wave propagation direction were observed for the frozen silty soil specimen with prefabricated crack.

Copyright: © 2020 Dongdong Ma et al.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10427177
  • Publié(e) le:
    13.07.2020
  • Modifié(e) le:
    02.06.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine