0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Intelligent fault diagnosis of rotating machinery under variable working conditions based on deep transfer learning with fusion of local and global time–frequency features

Auteur(s): (School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China)
(School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China)
ORCID (School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China)
ORCID (School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China)
(School of Engineering, University of British Columbia, Kelowna, BC, Canada)
(School of Engineering, University of British Columbia, Kelowna, BC, Canada)
(School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China)
Médium: article de revue
Langue(s): anglais
Publié dans: Structural Health Monitoring, , n. 4, v. 23
Page(s): 2238-2254
DOI: 10.1177/14759217231199427
Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1177/14759217231199427.
  • Informations
    sur cette fiche
  • Reference-ID
    10755766
  • Publié(e) le:
    14.01.2024
  • Modifié(e) le:
    20.09.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine