0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Impact of Blending on Strength Distribution of Ambient Cured Metakaolin and Palm Oil Fuel Ash Based Geopolymer Mortar

Auteur(s):



Médium: article de revue
Langue(s): anglais
Publié dans: Advances in Civil Engineering, , v. 2014
Page(s): 1-8
DOI: 10.1155/2014/658067
Abstrait:

This paper investigates the influence of blending of metakaolin with silica rich palm oil fuel ash (POFA) on the strength distribution of geopolymer mortar. The broadness of strength distribution of quasi-brittle to brittle materials depends strongly on the existence of flaws such as voids, microcracks, and impurities in the material. Blending of materials containing alumina and silica with the objective of improving the performance of geopolymer makes comprehensive characterization necessary. The Weibull distribution is used to study the strength distribution and the reliability of geopolymer mortar specimens prepared from 100% metakaolin, 50% and 70% palm and cured under ambient condition. Mortar prisms and cubes were used to test the materials in flexure and compression, respectively, at 28 days and the results were analyzed using Weibull distribution. In flexure, Weibull modulus increased with POFA replacement, indicating reduced broadness of strength distribution from an increased homogeneity of the material. Modulus, however, decreased with increase in replacement of POFA in the specimens tested under compression. It is concluded that Weibull distribution is suitable for analyses of the blended geopolymer system. While porous microstructure is mainly responsible for flexural failure, heterogeneity of reaction relics is responsible for the compression failure.

Copyright: © 2014 Taliat Ola Yusuf et al.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 3.0 (CC-BY 3.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée.

  • Informations
    sur cette fiche
  • Reference-ID
    10176938
  • Publié(e) le:
    07.12.2018
  • Modifié(e) le:
    02.06.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine