0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Fusion-Based Damage Segmentation for Multimodal Building Façade Images from an End-to-End Perspective

Auteur(s):

ORCID

ORCID
Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 1, v. 15
Page(s): 63
DOI: 10.3390/buildings15010063
Abstrait:

Multimodal image data have found widespread applications in visual-based building façade damage detection in recent years, offering comprehensive inspection of façade surfaces with the assistance of drones and infrared thermography. However, the comprehensive integration of such complementary data has been hindered by low levels of automation due to the absence of properly developed methods, resulting in high cost and low efficiency. Thus, this paper proposes an automatic end-to-end building façade damage detection method by integrating multimodal image registration, infrared–visible image fusion (IVIF), and damage segmentation. An infrared and visible image dataset consisting of 1761 pairs encompassing 4 main types of façade damage has been constructed for processing and training. A novel infrared–visible image registration method using main orientation assignment for feature point extraction is developed, reaching a high RMSE of 14.35 to align the multimodal images. Then, a deep learning-based infrared–visible image fusion (IVIF) network is trained to preserve damage characteristics between the modalities. For damage detection, a relatively high mean average precision (mAP) result of 85.4% is achieved by comparing four instance segmentation models, affirming the effective utilization of IVIF results.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10810188
  • Publié(e) le:
    17.01.2025
  • Modifié(e) le:
    25.01.2025
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine