0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Fusion-Based Damage Segmentation for Multimodal Building Façade Images from an End-to-End Perspective

Autor(en):

ORCID

ORCID
Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Buildings, , n. 1, v. 15
Seite(n): 63
DOI: 10.3390/buildings15010063
Abstrakt:

Multimodal image data have found widespread applications in visual-based building façade damage detection in recent years, offering comprehensive inspection of façade surfaces with the assistance of drones and infrared thermography. However, the comprehensive integration of such complementary data has been hindered by low levels of automation due to the absence of properly developed methods, resulting in high cost and low efficiency. Thus, this paper proposes an automatic end-to-end building façade damage detection method by integrating multimodal image registration, infrared–visible image fusion (IVIF), and damage segmentation. An infrared and visible image dataset consisting of 1761 pairs encompassing 4 main types of façade damage has been constructed for processing and training. A novel infrared–visible image registration method using main orientation assignment for feature point extraction is developed, reaching a high RMSE of 14.35 to align the multimodal images. Then, a deep learning-based infrared–visible image fusion (IVIF) network is trained to preserve damage characteristics between the modalities. For damage detection, a relatively high mean average precision (mAP) result of 85.4% is achieved by comparing four instance segmentation models, affirming the effective utilization of IVIF results.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
Lizenz:

Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden.

  • Über diese
    Datenseite
  • Reference-ID
    10810188
  • Veröffentlicht am:
    17.01.2025
  • Geändert am:
    17.01.2025
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine