0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Freeway Recurrent Bottleneck Identification Algorithms Considering Detector Data Quality Issues

Auteur(s): (Postdoctoral Research Fellow, Dept. of Civil, Architectural, and Environmental Engineering, Univ. of Texas at Austin, 1616 Guadalupe St., Ste. 4.228, Austin, TX 78701 (corresponding author).)
(IT Program Manager, Dept. of Civil and Environmental Engineering, Univ. of Wisconsin-Madison, 2205 Engineering Hall, 1415 Engineering Drive, Madison, WI 53706.)
(Research Assistant, Dept. of Civil and Environmental Engineering, Univ. of Wisconsin-Madison, 1241 Engineering Hall, 1415 Engineering Drive, Madison, WI 53706.)
(Professor, School of Transportation, Southeast Univ., No. 2 Si Pai Lou, Nanjing 210096, China; and Dept. of Civil and Environmental Engineering, Univ. of Wisconsin-Madison, 1212 Engineering Hall, 1415 Engineering Dr., Madison, WI 53706.)
(Professor, Dept. of Civil, Architectural, and Environmental Engineering, Univ. of Texas at Austin, 1 Univ. Station C1761, Austin, TX 78712.)
Médium: article de revue
Langue(s): anglais
Publié dans: Journal of Transportation Engineering, , n. 10, v. 138
Page(s): 1205-1214
DOI: 10.1061/(asce)te.1943-5436.0000424
Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1061/(asce)te.1943-5436.0000424.
  • Informations
    sur cette fiche
  • Reference-ID
    10635433
  • Publié(e) le:
    29.11.2021
  • Modifié(e) le:
    29.11.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine