0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Forecasting the Final Contract Cost on the Basis of the Owner’s Cost Estimation Using an Artificial Neural Network

Auteur(s): ORCID

ORCID
Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 3, v. 13
Page(s): 786
DOI: 10.3390/buildings13030786
Abstrait:

Raising the final contract cost (FCC) is a significant risk for project owners. This study hypothesizes that the factors that cause owner’s cost estimation (OCE) accuracy and FCC changes share the same causes, and a case study confirmed that the two variables (OCE and FCC) could be correlated. Accordingly, this study aims to develop a forecast model to predict FCC on the basis of the initial OCE, which has not been studied previously. This study utilized data from 34 Saudi Arabian projects. Two linear regression models developed the data, and the square root function transformed the data. Moreover, the artificial neural network (ANN) model was developed after data standardization using Zavadskas and Turskis’ logarithmic method. The results showed that the ANN model had a MAPE smaller than the two linear regression models. Using Zavadskas and Turskis’ logarithmic standardization method and elimination of data that had an absolute percentage error (APE) of more than 35% led to an increase in ANN model accuracy and provided a MAPE value of less than 8.5%.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10712790
  • Publié(e) le:
    21.03.2023
  • Modifié(e) le:
    10.05.2023
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine