0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Fire Risk Assessment and Experimental Study of Transformer Insulating Oil

Auteur(s):


ORCID


Médium: article de revue
Langue(s): anglais
Publié dans: Advances in Civil Engineering, , v. 2022
Page(s): 1-12
DOI: 10.1155/2022/7185045
Abstrait:

Most previous works concentrated on burning characteristics of pool fire using common fuels such as heptane, propane, biodiesel, and diesel, whereas burning characteristics for transformer oil are barely involved, although transformer oil is arguable of more practical importance in power system. This study performed a series of pool fire experiments using transformer oil to study the burning characteristics in open and confined spaces. Three fuel thicknesses and five initial temperatures are changed in open space. The essential parameters of mass loss rate, flame height, and fire plume temperature are obtained and analyzed. Moreover, three oil pool diameters are varied in a chamber. The main conclusions are summarized as follows: the variations of mass loss rate, flame height, and fire plume temperature not only obviously increase as the fuel thickness increases from 0.5 cm to 1.0 cm, but also insignificantly increase as the fuel thickness changes from 1.0 cm to 2.0 cm. The mass loss rate is less sensitive to the initial temperature of transformer oil, but the flame height and fire plume temperature significantly rise with the initial temperature. Moreover, the modified models to predict the flame height and fire plume temperature for 25°C initial temperature conditions are proposed, but the fitting coefficients are obviously different from that for common liquid fuels. The flame height in confined space is higher and will rapidly increase to the maximum, then decreases, and tends to be stable, which is obviously different from the oil pool fire burning in open space. In addition, the phenomenon of burning blast and the ignition of the adjacent oil pool will be observed with a high-temperature ignition source and a certain high temperature in a chamber under 30 cm oil pool diameter, which will not be recorded in 15 cm and 20 cm.

Copyright: © Ji Jun et al. et al.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10679026
  • Publié(e) le:
    18.06.2022
  • Modifié(e) le:
    10.11.2022
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine