Fast Local Laplacian-Based Steerable and Sobel Filters Integrated with Adaptive Boosting Classification Tree for Automatic Recognition of Asphalt Pavement Cracks
Auteur(s): |
Nhat-Duc Hoang
Quoc-Lam Nguyen |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Advances in Civil Engineering, 2018, v. 2018 |
Page(s): | 1-17 |
DOI: | 10.1155/2018/5989246 |
Abstrait: |
Effective road maintenance requires adequate periodic surveys of asphalt pavement condition. The manual process of pavement assessment is labor intensive and time-consuming. This study proposes an alternative for automating the periodic surveys of pavement condition by means of image processing and machine learning. Advanced image processing techniques including fast local Laplacian filter, Sobel filter, steerable filter, and projection integral are employed for image enhancement and analysis to extract useful features from digital images. Based on the features produced by these image processing techniques, adaptive boosting classification tree is used to perform pavement crack recognition tasks. A dataset of image samples consisting of five classes (alligator crack, diagonal crack, longitudinal crack, noncrack, and transverse crack) has been collected to construct and verify the performance of the adaptive boosting classification tree. The experimental results show that the proposed approach has achieved a high crack classification accuracy which is roughly 90%. Therefore, the newly developed model is a promising alternative to help transportation agencies in pavement condition evaluation. |
Copyright: | © 2018 Nhat-Duc Hoang et al. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
4.4 MB
- Informations
sur cette fiche - Reference-ID
10176398 - Publié(e) le:
30.11.2018 - Modifié(e) le:
02.06.2021