0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Extraction of Feature Information from Point Cloud of Large Volume Steel Truss Members

Auteur(s): ORCID
ORCID



Médium: article de revue
Langue(s): anglais
Publié dans: Advances in Civil Engineering, , v. 2024
Page(s): 1-18
DOI: 10.1155/2024/5891852
Abstrait:

In order to address the issues pertaining to the subjective nature and limited precision associated with selecting feature points in the point cloud of a large steel truss structure, this study proposes a batch automatic extraction approach for identifying key feature information, including boundaries, corner points, and bolt holes of large steel truss components. This method relies on the nested application of established processing algorithms such as Euclidean clusters, regional growth clusters, and random sampling consensus. In addition, a novel approach is suggested for validating the precision of feature information extraction through the utilization of standard theoretical models. The results of the experimental and large-scale lower chord tests demonstrate that our approach is not dependent on specialized software, exhibits excellent efficiency, and possesses an acceptable degree of automation. The findings of this study can provide accurate data support for reverse modeling, virtual trial assembly, and dimensional inspection of steel truss components.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1155/2024/5891852.
  • Informations
    sur cette fiche
  • Reference-ID
    10752095
  • Publié(e) le:
    14.01.2024
  • Modifié(e) le:
    14.01.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine