0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Extraction of Feature Information from Point Cloud of Large Volume Steel Truss Members

Autor(en): ORCID
ORCID



Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Advances in Civil Engineering, , v. 2024
Seite(n): 1-18
DOI: 10.1155/2024/5891852
Abstrakt:

In order to address the issues pertaining to the subjective nature and limited precision associated with selecting feature points in the point cloud of a large steel truss structure, this study proposes a batch automatic extraction approach for identifying key feature information, including boundaries, corner points, and bolt holes of large steel truss components. This method relies on the nested application of established processing algorithms such as Euclidean clusters, regional growth clusters, and random sampling consensus. In addition, a novel approach is suggested for validating the precision of feature information extraction through the utilization of standard theoretical models. The results of the experimental and large-scale lower chord tests demonstrate that our approach is not dependent on specialized software, exhibits excellent efficiency, and possesses an acceptable degree of automation. The findings of this study can provide accurate data support for reverse modeling, virtual trial assembly, and dimensional inspection of steel truss components.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.1155/2024/5891852.
  • Über diese
    Datenseite
  • Reference-ID
    10752095
  • Veröffentlicht am:
    14.01.2024
  • Geändert am:
    14.01.2024
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine