0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Experimental Investigation on Carbonation Behavior in Lime-Stabilized Expansive Soil

Auteur(s):





Médium: article de revue
Langue(s): anglais
Publié dans: Advances in Civil Engineering, , v. 2020
Page(s): 1-14
DOI: 10.1155/2020/7865469
Abstrait:

The carbonation behavior of lime-stabilized expansive soil is important for assessing the stabilization efficiency from the perspective of durability. In this study, the accelerated carbonation tests, measurement of pH value distribution, and the free swell ratio tests were conducted to investigate the evolutions of carbonation depth, carbonation extent, and expansive potential of lime-stabilized expansive soil. XRD, MIP, and SEM techniques were adopted as supplements to reveal the carbonation mechanism. Results demonstrated that the carbonation depth of lime-stabilized expansive soil increased significantly as time elapsed; however, the rate of increase reduced when the carbonation time increased. Higher carbonation depth was obtained at higher temperature and CO₂ concentration and lower relative humidity, which was described by an empirical model. Fully, partly, and noncarbonated zones were subsequently presented with an increase in the depth of the soil. The expansive potential of lime-stabilized expansive soil was partially recovered during carbonation. The obtained linear relationships between the free swell ratio and pH value were adopted to describe the evolution of expansive behavior with carbonation time and depth. In microstructural analysis, the conversion of portlandite into calcium carbonate was significant, which resulted in changes in microstructure and controlled the carbonation behavior.

Copyright: © 2020 Long Xu et al.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10414080
  • Publié(e) le:
    26.02.2020
  • Modifié(e) le:
    02.06.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine