0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Experimental and Mathematical Modeling of Monotonic Behavior of Calcareous Sand

Auteur(s):





Médium: article de revue
Langue(s): anglais
Publié dans: Advances in Civil Engineering, , v. 2020
Page(s): 1-14
DOI: 10.1155/2020/8861605
Abstrait:

The prominent performance of wave elimination and energy absorption makes calcareous sand important and useful in infrastructure construction and protection engineering. Due to the high compressibility induced by remarkable intragranular void and irregular shape, calcareous sand presents different mechanical behaviors from common terrestrial sands. Considerable efforts have been made to explore the static and dynamic mechanical properties of calcareous sand. In this paper, a series of monotonous experiments have been performed on calcareous sand utilizing the electrohydraulic servo-controlled test apparatus designed by the Global Digital Systems Ltd (GDS). The effects of confining pressure and relative density on the mechanical properties of dry, drained, and undrained saturated sand were studied, and the underlying micromechanism of deformation and failure was discussed. It can be found that the residual stress of dry calcareous sand is independent of the relative density, while the peak stress and residual stress of drainage saturated sand have a positive correlation with the relative density. The increase of confining pressure makes the strain softening more remarkable and heightens the peak stress and residual stress. The stress-strain curve of calcareous sand can be divided into two portions: prepeak portion and postpeak softening portion. For the dry sand and drainage saturated sand, the softened part can be partitioned into three phases, i.e., accelerated phase, steady phase, and degradation phase, while the undrained saturated sand tends to hyperbolic softening. A mathematical model composed of a hyperbolic function and an inverted S-shaped function was formulated to describe the multiphase characteristic, in which the setting of parameterpexpands its applicability. The experimental result validated the model, showing that the model can better describe the monotonic stress-strain relationship of calcareous sand. Besides, the physical meanings of model parameters were discussed.

Copyright: © 2020 Haotian Zhang et al.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10429529
  • Publié(e) le:
    14.08.2020
  • Modifié(e) le:
    02.06.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine