0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Establishing the Relationship between Occupants’ Thermal Behavior and Energy Consumption during Showering

Auteur(s): ORCID

ORCID
Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 5, v. 13
Page(s): 1300
DOI: 10.3390/buildings13051300
Abstrait:

Despite an increased awareness about energy conservation in the past decade, the energy consumed for water heating has increased by 7% from 2008 (17%) to 2018 (24%) in Hong Kong. A literature review on existing energy-saving technologies during showering showed that occupants’ behavior significantly impacted energy consumption. However, the exact relationship between them was not yet fully understood. Therefore, this study developed a mathematical energy consumption model to investigate the relationship between occupants’ behavior and energy consumption during showering. This relationship identified an effective energy-saving strategy in the shower without scarifying occupants’ thermal comfort. The main variables that influence energy consumption and thermal comfort in bathrooms namely air temperature, water temperature, ventilation rate, and water flow rate, were considered. It was found that among them, water flow rate and ventilation rate are the most and least influential variables, respectively, in energy saving. Therefore, the ventilation rate was suggested to be at least 0.03 kg·s−1, and the water flow rate was meant to be lower than 0.15 kg·s−1 (based on related requirements). These findings could help residential occupants and facility managers determine the optimal showering settings for thermal comfort, energy consumption, and environmental effects.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10728176
  • Publié(e) le:
    30.05.2023
  • Modifié(e) le:
    01.06.2023
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine