0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Auteur(s):




Médium: article de revue
Langue(s): anglais
Publié dans: Advances in Civil Engineering, , v. 2020
Page(s): 1-13
DOI: 10.1155/2020/1243074
Abstrait:

Surface protection has been accepted as an effective way to improve the durability of concrete. In this study, nanosilica (NS) was used to improve the impermeability of cement-fly ash system and this kind of material was expected to be applied as surface protection material (SPM) for concrete. Binders composed of 70% cement and 30% fly ash (FA) were designed and nanosilica (NS, 0–4% of the binder) was added. Pore structure of the paste samples was evaluated by MIP and the fractal dimension of the pore structure was also discussed. Hydrates were investigated by XRD, SEM, and TG; the microstructure of hydrates was analyzed with SEM-EDS. The results showed that in the C-FA-NS system, NS accelerated the whole hydration of the cement-FA system. Cement hydration was accelerated by adding NS, and probably, the pozzolanic reaction of FA was slightly hastened because NS not only consumed calcium hydroxide by the pozzolanic reaction to induce the cement hydration but also acted as nucleation seed to induce the formation of C-S-H gel. NS obviously refined the pore structure, increased the complexity of the pore structure, and improved the microstructure, thereby significantly improving the impermeability of the cement-FA system. This kind of materials would be expected to be used as SPM; the interface performance between SPM and matrix, such as shrinkage and bond strength, and how to cast it onto the surface of matrix should be carefully considered.

Copyright: © Huaqing Liu et al.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10417168
  • Publié(e) le:
    31.03.2020
  • Modifié(e) le:
    02.06.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine