0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Durability Evaluation of GGBS-RHA-Based Geopolymer Concrete Along with Lightweight Expanded Clay Aggregate Using SEM Images and EDAX Analysis

Auteur(s): ORCID
ORCID
Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 11, v. 14
Page(s): 3355
DOI: 10.3390/buildings14113355
Abstrait:

The durability of geopolymer concrete containing Ground Granulated Blast Furnace Slag (GGBS) and Rice Husk Ash (RHA), along with Lightweight Expanded Clay Aggregate (LECA), was investigated. Six different LWGPC mixtures were made with NaOH molarities of 8, 10, and 12M. For each molarity, two combinations of source materials were selected: 100% GGBS (G) and 80% GGBS with 20% RHA (RG). In all the mixtures, coarse aggregate was substituted with 35% LECA. LWGPC mixtures were exposed to 3% HCl, 5% MgSO4, and 3.5% NaCl for studying the durability properties. The test results demonstrate that 100% GGBS with 12M NaOH (12G) outperformed all other mixtures. The residual compressive strength of 12G mix LWGPC specimens after six months of exposure was found to be 86.4% in an acid environment, 90.6% in a sulfate environment, and 91.4% in a salt environment. The elemental composition analyzed using EDAX reveals that silica, alumina, calcium, and sodium are the predominant elements that form a dense microstructure with N-A-S-H, C-A-S-H, and C-S-H. Further, the inner properties of the specimens exposed to chemicals were examined using MATLAB R2023b and ImageJ 1.54f based on SEM images. The SEM image showed that the porosity of LWGPC specimens ranged from 0.5194 to 0.6748 µm, signifying an enhanced durability performance. The experimental results and microstructural analysis show that the LWGPC incorporating RHA and GGBS with LECA offers a superior performance, making it a promising solution for sustainable and durable construction.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10804635
  • Publié(e) le:
    10.11.2024
  • Modifié(e) le:
    10.11.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine