Digital Twin-Based Numerical Simulation Method for Cee-Shape Cold-Formed Steel Members
Auteur(s): |
Pengfei Du
Xi Zhao Zhidong Zhang Xiaoyan Sun Gang Du |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Buildings, 23 août 2023, n. 9, v. 13 |
Page(s): | 2388 |
DOI: | 10.3390/buildings13092388 |
Abstrait: |
Cold-formed steel (CFS) structures are widely used in construction and infrastructure due to their lightweight and high-strength properties. However, their thin-walled nature makes them geometrically sensitive to compressive loading. The Digital Twin (DT)-based numerical simulation method is developed using the actual geometries of CFS shapes, which are acquired by a 3D laser scanner. The DT-based numerical simulation incorporates the reconstructed measurement point clouds into the finite element modeling, ensuring that actual geometric features are retained. A series of tests, including material and axial compression testing, are conducted to validate the modeling parameters, such as mesh sizes and boundary conditions. The advantages of the DT-based numerical simulation method are highlighted compared to the traditional CFS member numerical simulation, which incorporates only the first mode of geometric imperfection. Additionally, DT-based numerical simulations offer more accurate load capacities and deformation predictions. Moreover, the automated and validated DT-based numerical simulation demonstrates prevalence in modeling efficiency and computation effectiveness. The DT-based numerical simulation method holds potential for application in smart structural analysis, where accurate geometries derived from extensive measurement point clouds are integrated into numerical modeling. |
Copyright: | © 2023 by the authors; licensee MDPI, Basel, Switzerland. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
17.95 MB
- Informations
sur cette fiche - Reference-ID
10744454 - Publié(e) le:
28.10.2023 - Modifié(e) le:
07.02.2024