0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Design and integration of textile-based temperature sensors for smart textile applications

Auteur(s): ORCID
ORCID

ORCID
Médium: article de revue
Langue(s): anglais
Publié dans: Smart Materials and Structures, , n. 2, v. 33
Page(s): 025012
DOI: 10.1088/1361-665x/ad1c52
Abstrait:

Wearable technology is now frequently utilized to check people’s health. Body temperature measurements needed for telemedicine and real-time health monitoring applications can be taken with wearable temperature sensors. The goal of this work was to create thermocouples made of textiles for use in smart textile applications, particularly temperature monitoring in outfield uniforms. The thermocouples were created using metal wire and conductive yarns; however, metal-based thermocouples were only created for reference. In these studies, three junction levels and three distinct materials were used, and the Seebeck coefficient for these samples was examined. A four-probe heating system coupled with a multimeter was used to calculate the Seebeck coef-ficient. Results show that the cotton-based conductive yarn thermo-couple with stainless steel yarn (C + SS2) junction performed well with the best Seebeck coefficient value. The thermocouple values with one, five, and ten junctions were sequentially 167.56 µv °C−1, 227.30 µv °C−1, and 267.54 µv °C−1. After the integration, ten junction thermocouples of C + SS2 showed the best Seebeck coefficient values.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1088/1361-665x/ad1c52.
  • Informations
    sur cette fiche
  • Reference-ID
    10758192
  • Publié(e) le:
    23.03.2024
  • Modifié(e) le:
    23.03.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine