A Deformation Prediction Model for Concrete Dams Based on RSA-VMD-AttLSTM
Auteur(s): |
Pei Liu
Hao Gu Chongshi Gu Yanbo Wang |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Buildings, 21 janvier 2025, n. 3, v. 15 |
Page(s): | 357 |
DOI: | 10.3390/buildings15030357 |
Abstrait: |
This paper presents a deformation prediction model for concrete dams that integrates a reptile search algorithm (RSA), a Variational Mode Decomposition (VMD) algorithm, and a long short_term memory network model with attention mechanism (AttLSTM). This model utilizes the RSA to optimize the parameters K and α of the VMD algorithm. It combines the variance of the modified mode with the sample entropy of these data as the objective function, effectively converting monitoring data into a stable signal while retaining essential characteristic variation. Data are reformatted into a three-dimensional structure and partitioned into training and testing sets. The AttLSTM network was applied to forecast deformation, and results were validated using practical engineering cases. The performance of the proposed model was compared against that of four other models: LSTM, VMD-LSTM, attention LSTM, and VMD-AttLSTM models. Analysis of the five evaluation criteria revealed that the RSA can better optimize the parameters of the VMD algorithm. Consequently, the proposed model demonstrates superior noise reduction capabilities and improved prediction accuracy. |
Copyright: | © 2025 by the authors; licensee MDPI, Basel, Switzerland. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
3.88 MB
- Informations
sur cette fiche - Reference-ID
10816031 - Publié(e) le:
03.02.2025 - Modifié(e) le:
03.02.2025