0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

A Deformation Prediction Model for Concrete Dams Based on RSA-VMD-AttLSTM

Auteur(s):



Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 3, v. 15
Page(s): 357
DOI: 10.3390/buildings15030357
Abstrait:

This paper presents a deformation prediction model for concrete dams that integrates a reptile search algorithm (RSA), a Variational Mode Decomposition (VMD) algorithm, and a long short_term memory network model with attention mechanism (AttLSTM). This model utilizes the RSA to optimize the parameters K and α of the VMD algorithm. It combines the variance of the modified mode with the sample entropy of these data as the objective function, effectively converting monitoring data into a stable signal while retaining essential characteristic variation. Data are reformatted into a three-dimensional structure and partitioned into training and testing sets. The AttLSTM network was applied to forecast deformation, and results were validated using practical engineering cases. The performance of the proposed model was compared against that of four other models: LSTM, VMD-LSTM, attention LSTM, and VMD-AttLSTM models. Analysis of the five evaluation criteria revealed that the RSA can better optimize the parameters of the VMD algorithm. Consequently, the proposed model demonstrates superior noise reduction capabilities and improved prediction accuracy.

Copyright: © 2025 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10816031
  • Publié(e) le:
    03.02.2025
  • Modifié(e) le:
    03.02.2025
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine