A Deformation Prediction Model for Concrete Dams Based on RSA-VMD-AttLSTM
Autor(en): |
Pei Liu
Hao Gu Chongshi Gu Yanbo Wang |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Buildings, 21 Januar 2025, n. 3, v. 15 |
Seite(n): | 357 |
DOI: | 10.3390/buildings15030357 |
Abstrakt: |
This paper presents a deformation prediction model for concrete dams that integrates a reptile search algorithm (RSA), a Variational Mode Decomposition (VMD) algorithm, and a long short_term memory network model with attention mechanism (AttLSTM). This model utilizes the RSA to optimize the parameters K and α of the VMD algorithm. It combines the variance of the modified mode with the sample entropy of these data as the objective function, effectively converting monitoring data into a stable signal while retaining essential characteristic variation. Data are reformatted into a three-dimensional structure and partitioned into training and testing sets. The AttLSTM network was applied to forecast deformation, and results were validated using practical engineering cases. The performance of the proposed model was compared against that of four other models: LSTM, VMD-LSTM, attention LSTM, and VMD-AttLSTM models. Analysis of the five evaluation criteria revealed that the RSA can better optimize the parameters of the VMD algorithm. Consequently, the proposed model demonstrates superior noise reduction capabilities and improved prediction accuracy. |
Copyright: | © 2025 by the authors; licensee MDPI, Basel, Switzerland. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
3.88 MB
- Über diese
Datenseite - Reference-ID
10816031 - Veröffentlicht am:
03.02.2025 - Geändert am:
03.02.2025