0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Deep Learning-based Land-cover Change Detection in Remote-sensing Imagery

Auteur(s):
Médium: article de revue
Langue(s): anglais
Publié dans: Jordan Journal of Civil Engineering, , n. 4, v. 17
DOI: 10.14525/jjce.v17i4.06
Abstrait:

With the significant advancement in deep-learning methods and their feature representation, deep-learning methods are more prevalent in solving change-detection tasks. The prime purpose of change detection is to detect the changes on the surface of the earth. In this work, an end-to-end encoder-decoder architecture is used to detect the changes in the land cover. The proposed method uses residual U-Net to find land-cover image changes. The UNet structure is used as the backbone of the network. The effectiveness of the proposed method has been experimented through LEVIR-CD datasets. The results showed that the proposed method outperforms the state-of-the-art techniques and gives reliable results. These techniques can be used to examine changes in the earth's crest due to natural events, such as landslides, earthquakes, erosion and geo-hazards or human activity, like mining and development. KEYWORDS: Change detection, Remote sensing, Residual UNet, Deep learning, Land cover, Climate.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.14525/jjce.v17i4.06.
  • Informations
    sur cette fiche
  • Reference-ID
    10744149
  • Publié(e) le:
    28.10.2023
  • Modifié(e) le:
    19.09.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine