0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Deep Learning-based Land-cover Change Detection in Remote-sensing Imagery

Autor(en):
Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Jordan Journal of Civil Engineering, , n. 4, v. 17
DOI: 10.14525/jjce.v17i4.06
Abstrakt:

With the significant advancement in deep-learning methods and their feature representation, deep-learning methods are more prevalent in solving change-detection tasks. The prime purpose of change detection is to detect the changes on the surface of the earth. In this work, an end-to-end encoder-decoder architecture is used to detect the changes in the land cover. The proposed method uses residual U-Net to find land-cover image changes. The UNet structure is used as the backbone of the network. The effectiveness of the proposed method has been experimented through LEVIR-CD datasets. The results showed that the proposed method outperforms the state-of-the-art techniques and gives reliable results. These techniques can be used to examine changes in the earth's crest due to natural events, such as landslides, earthquakes, erosion and geo-hazards or human activity, like mining and development. KEYWORDS: Change detection, Remote sensing, Residual UNet, Deep learning, Land cover, Climate.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.14525/jjce.v17i4.06.
  • Über diese
    Datenseite
  • Reference-ID
    10744149
  • Veröffentlicht am:
    28.10.2023
  • Geändert am:
    19.09.2024
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine