0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Deep learning-based automated underground cavity detection using three-dimensional ground penetrating radar

Auteur(s):



Médium: article de revue
Langue(s): anglais
Publié dans: Structural Health Monitoring, , n. 1, v. 19
Page(s): 173-185
DOI: 10.1177/1475921719838081
Abstrait:

Three-dimensional ground penetrating radar data are often ambiguous and complex to interpret when attempting to detect only underground cavities because ground penetrating radar reflections from various underground objects can appear like those from cavities. In this study, we tackle the issue of ambiguity by proposing a system based on deep convolutional neural networks, which is capable of autonomous underground cavity detection beneath urban roads using three-dimensional ground penetrating radar data. First, a basis pursuit-based background filtering algorithm is developed to enhance the visibility of underground objects. The deep convolutional neural network is then established and applied to automatically classify underground objects using the filtered three-dimensional ground penetrating radar data as represented by three types of images: A-, B-, and C-scans. In this study, we utilize a novel two-dimensional grid image consisting of several B- and C-scan images. Cavity, pipe, manhole, and intact features extracted from in situ three-dimensional ground penetrating radar data are used to train the convolutional neural network. The proposed technique is experimentally validated using real three-dimensional ground penetrating radar data obtained from urban roads in Seoul, South Korea.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1177/1475921719838081.
  • Informations
    sur cette fiche
  • Reference-ID
    10562284
  • Publié(e) le:
    11.02.2021
  • Modifié(e) le:
    19.02.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine