0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Deep learning-based automated underground cavity detection using three-dimensional ground penetrating radar

Autor(en):



Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Structural Health Monitoring, , n. 1, v. 19
Seite(n): 173-185
DOI: 10.1177/1475921719838081
Abstrakt:

Three-dimensional ground penetrating radar data are often ambiguous and complex to interpret when attempting to detect only underground cavities because ground penetrating radar reflections from various underground objects can appear like those from cavities. In this study, we tackle the issue of ambiguity by proposing a system based on deep convolutional neural networks, which is capable of autonomous underground cavity detection beneath urban roads using three-dimensional ground penetrating radar data. First, a basis pursuit-based background filtering algorithm is developed to enhance the visibility of underground objects. The deep convolutional neural network is then established and applied to automatically classify underground objects using the filtered three-dimensional ground penetrating radar data as represented by three types of images: A-, B-, and C-scans. In this study, we utilize a novel two-dimensional grid image consisting of several B- and C-scan images. Cavity, pipe, manhole, and intact features extracted from in situ three-dimensional ground penetrating radar data are used to train the convolutional neural network. The proposed technique is experimentally validated using real three-dimensional ground penetrating radar data obtained from urban roads in Seoul, South Korea.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.1177/1475921719838081.
  • Über diese
    Datenseite
  • Reference-ID
    10562284
  • Veröffentlicht am:
    11.02.2021
  • Geändert am:
    19.02.2021
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine