0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

A Condition Assessment Tool for Steel Bridge Deck Pavement Systems Based on Data Balancing Methods and Machine Learning Algorithms

Auteur(s):


ORCID
Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 9, v. 14
Page(s): 2959
DOI: 10.3390/buildings14092959
Abstrait:

The primary challenge in the operation of steel deck pavement systems lies in the inspection and assessment of their condition. Traditionally, manual inspection methods are employed. However, these approaches are not only time-consuming and labor-intensive but also prone to human error. As a result, integrating data-driven machine learning technologies into the evaluation of pavement systems presents a significant advantage in addressing these issues. This study proposes a decision-making tool for estimating the condition levels of steel bridge deck pavement systems by employing classification techniques. To address the issue of class imbalance in the dataset, the SMOTE algorithm is utilized. Additionally, seven different machine learning methods—Light Gradient Boosting Machine, Extreme Gradient Boosting, Random Forest, Adaptive Boosting, K-Nearest Neighbor, Multilayer Perceptron, and Logistic Regression—are applied for training. Comparative analysis reveals that the Light Gradient Boosting performs optimally, achieving classification accuracies of 0.841 and 0.929 on the original and synthetic datasets, respectively.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10799823
  • Publié(e) le:
    23.09.2024
  • Modifié(e) le:
    23.09.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine