0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

A Condition Assessment Tool for Steel Bridge Deck Pavement Systems Based on Data Balancing Methods and Machine Learning Algorithms

Autor(en):


ORCID
Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Buildings, , n. 9, v. 14
Seite(n): 2959
DOI: 10.3390/buildings14092959
Abstrakt:

The primary challenge in the operation of steel deck pavement systems lies in the inspection and assessment of their condition. Traditionally, manual inspection methods are employed. However, these approaches are not only time-consuming and labor-intensive but also prone to human error. As a result, integrating data-driven machine learning technologies into the evaluation of pavement systems presents a significant advantage in addressing these issues. This study proposes a decision-making tool for estimating the condition levels of steel bridge deck pavement systems by employing classification techniques. To address the issue of class imbalance in the dataset, the SMOTE algorithm is utilized. Additionally, seven different machine learning methods—Light Gradient Boosting Machine, Extreme Gradient Boosting, Random Forest, Adaptive Boosting, K-Nearest Neighbor, Multilayer Perceptron, and Logistic Regression—are applied for training. Comparative analysis reveals that the Light Gradient Boosting performs optimally, achieving classification accuracies of 0.841 and 0.929 on the original and synthetic datasets, respectively.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
Lizenz:

Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden.

  • Über diese
    Datenseite
  • Reference-ID
    10799823
  • Veröffentlicht am:
    23.09.2024
  • Geändert am:
    23.09.2024
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine