0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Compressive Strength Prediction of Stabilized Dredged Sediments Using Artificial Neural Network

Auteur(s): ORCID
Médium: article de revue
Langue(s): anglais
Publié dans: Advances in Civil Engineering, , v. 2021
Page(s): 1-8
DOI: 10.1155/2021/6656084
Abstrait:

Stabilized dredged sediments are used as a backfilling material to reduce construction costs and a solution to environmental protection. Therefore, the compressive strength is an important criterion to determine the stabilized dredged sediments application such as road construction, building construction, and highway construction. Using the traditional method such as empirical approach and experimental methods, the determination of compressive strength of stabilized dredged sediments is difficult due to the complexity of this composite material. In this investigation, the artificial neural network (ANN) model is introduced to forecast the compressive strength. To perform the simulation, 51 experimental datasets were collected from the literature. The dataset consists of 4 input variables (water content, cement content, air foam content, and waste fishing net content) and output variable (compressive strength). Evaluation of the models was made and compared on training dataset (70% data) and testing dataset (30% remaining data) by the criteria of Pearson’s correlation coefficient (R), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE). The results show that the ANN model can accurately predict the compressive strength of stabilized dredged sediments with low water content. The cement content is the most important input affecting the unconfined compressive strength. The important input affecting the unconfined compressive strength can be in the following order: cement content > air foam content > water content > waste fishing net.

Copyright: © 2021 Van Quan Tran et al.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10602076
  • Publié(e) le:
    17.04.2021
  • Modifié(e) le:
    02.06.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine